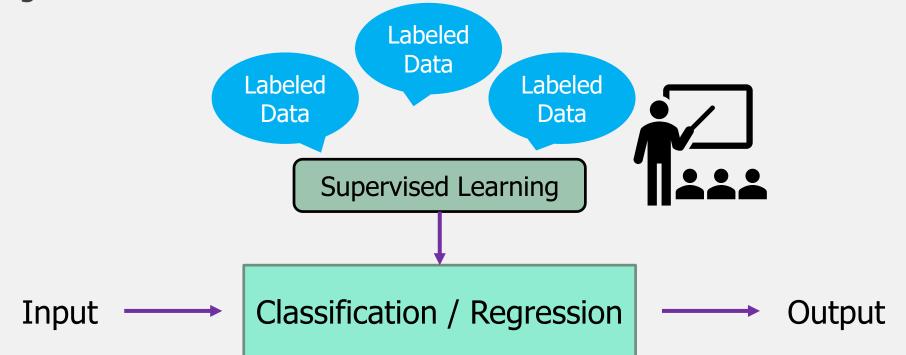


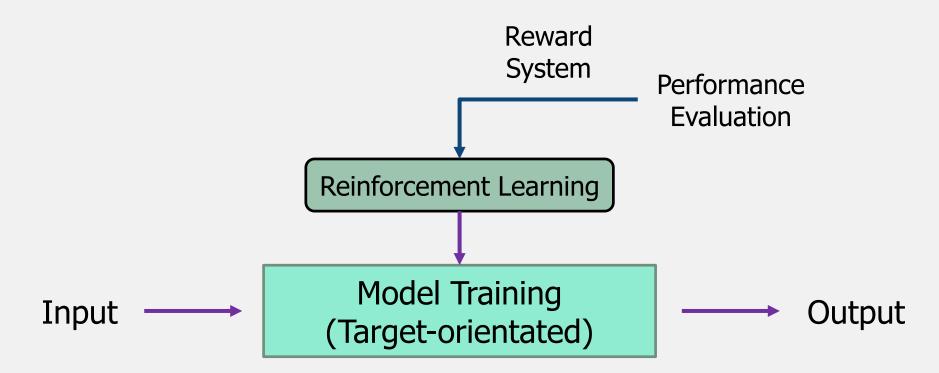
Supervised Learning

- Using labeled data to train model
- > Needing human to label data



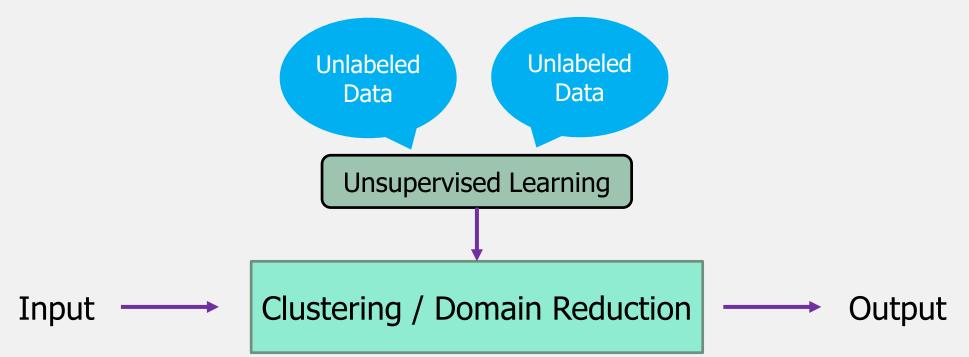
Reinforcement Learning

- > Learning by interaction
- > Needing reward to act



Unsupervised Learning

- Clustering by association
- > No needing human to label data

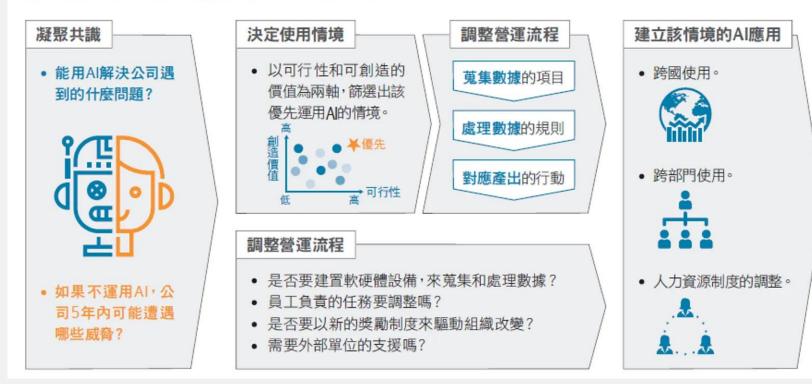


How to decide strategy?

Depend on the problems you want to solve

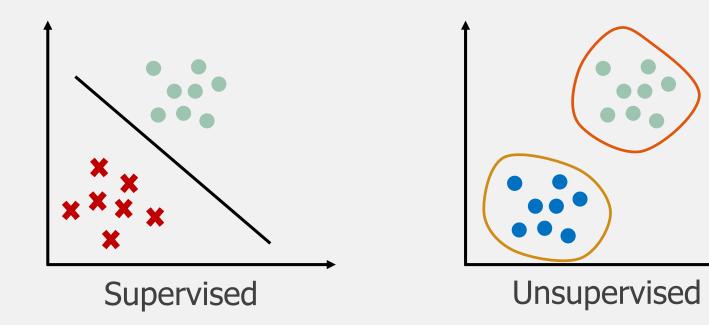
企業建構AI策略的5個流程

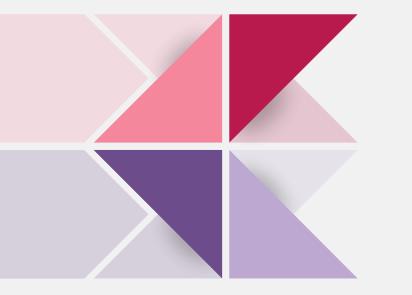
想活用AI,領導者和經營團隊應該一起思考以下5件事:



Model

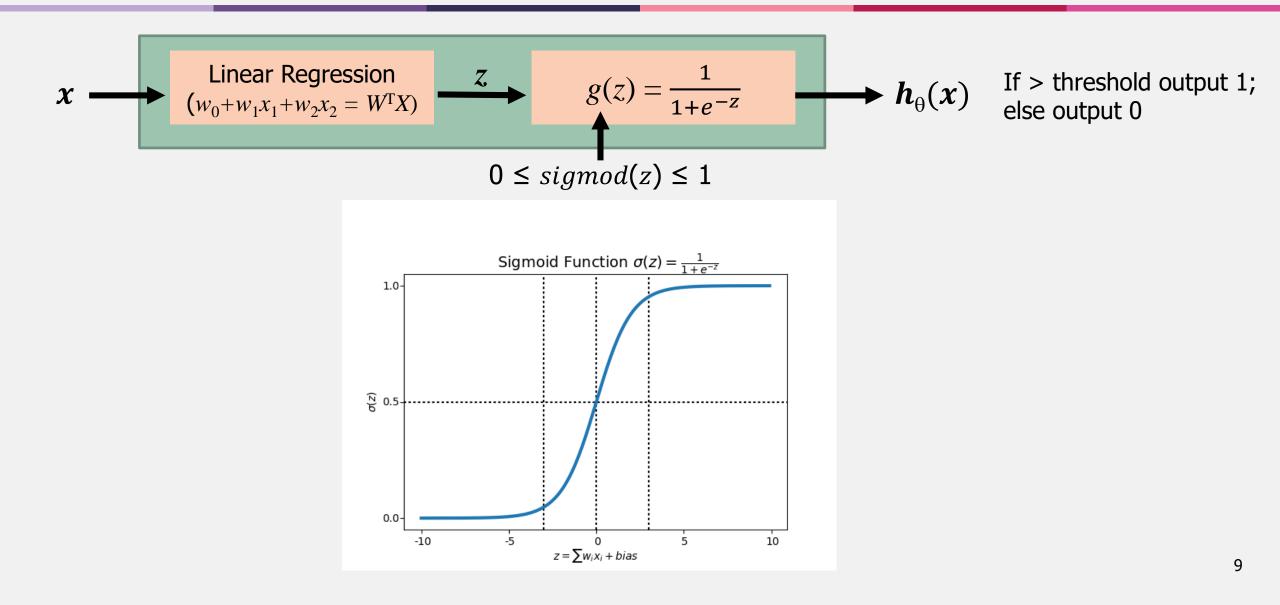
- Supervised
 - Linear regression, k-nearest neighbor, support vector machine, decision tree, etc.
- > Unsupervised
 - K-means, principle component analysis, etc.





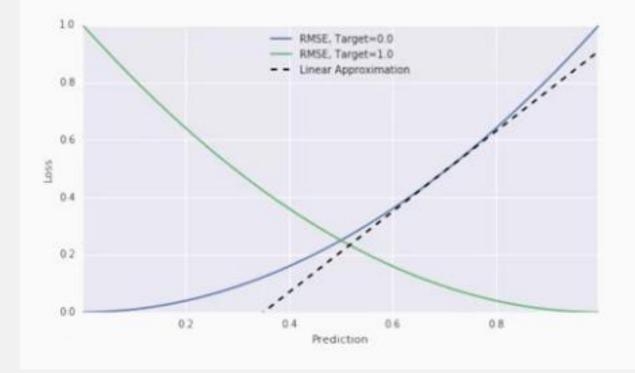
01

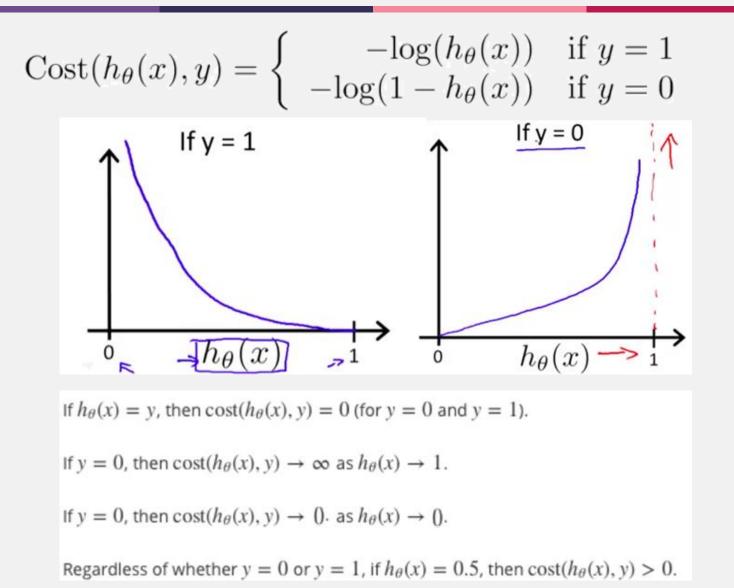
Supervised Learning



Linear regression:
$$J(\theta) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2}$$

Problem: RMSE doesn't work as well for classification





Multiclass problem

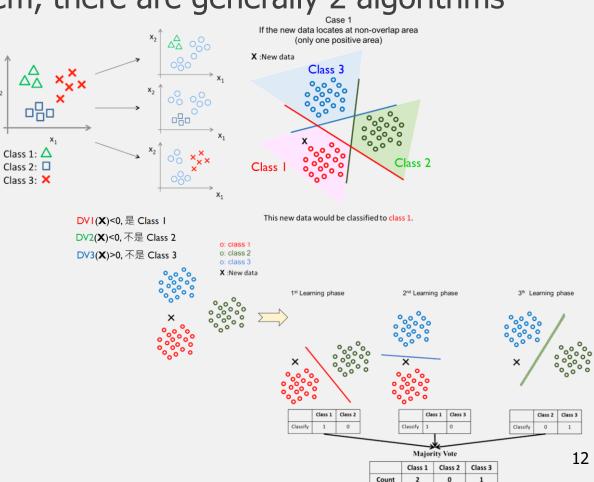
> When the problem is multi-class problem, there are generally 2 algorithms

One versus rest

The algorithm compares every class with all the remaining classes, building a model for every class If you have **n** classes to guess, you have **n** models

One versus one

The algorithm compares every class against every -individual remaining class, building a number of models equivalent to n * (n-1) / 2, where n is the number of classes



Supervised

K-nearest Neighbor

K-nearest Neighbor Classification (KNN)

- > KNN does not build model from the training data
- To classify a test instance d, define k-neighborhood P as k nearest neighbors of d
- > Count number n of training instances in P that belong to class c_i
- > Estimate $Pr(c_j | d)$ as n | k
- > No training is needed
- > Classification time is linear in training set size for each test case

Instance-based Learning

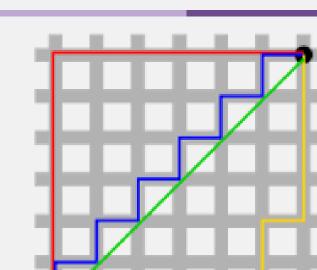
Learning=storing all training instances Classification=assigning target function to a new instance Referred to as "Lazy" learning

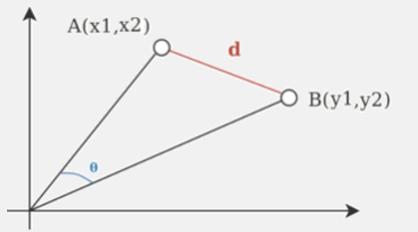
Algorithm kNN(D, d, k)

- 1 Compute the distance between d and every example in D;
- 2 Choose the k examples in D that are nearest to d, denote the set by $P (\subseteq D)$;
- 3 Assign d the class that is the most frequent class in P (or the majority class);

k is usually chosen empirically via a validation set or cross-validation by trying a range of k values

Distance function is crucial, but depends on applications





$$x = (x_{1}, x_{2}, x_{3}, ..., x_{n}) \text{ and } y = (y_{1}, y_{2}, y_{3}, ..., y_{n})$$

1) Manhattan Distance: $d(x, y) = \sum_{i=1}^{n} |(x_{i} - y_{i})|$
2) Euclidean Distance: $d(x, y) = \sqrt{\sum_{i=1}^{n} (x_{i} - y_{i})^{2}}$

3) Cosine Distance:
$$cos\theta = \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\|\|_{\vec{y}}}$$

Angle between two vectors times their lengths

$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i$$

 $\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$

 $\|\mathbf{a}\|\cos\theta$

b _

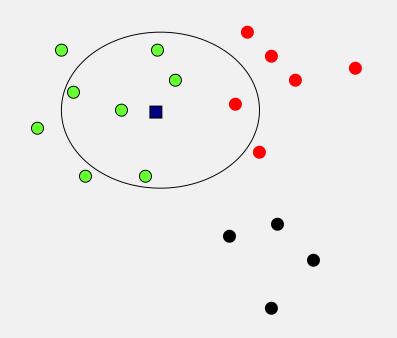
$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i$$

(standard inner product in Cartesian coordinates)

· Project vector onto another vector, project into basis, project into tangent plane,

Many uses:

...



A new point ■ Pr(science|■)?

Discussions

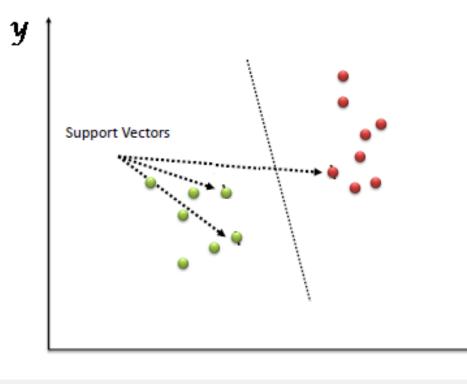
- > KNN can deal with complex and arbitrary decision boundaries.
- Despite its simplicity, researchers have shown that the classification accuracy of KNN can be quite strong and in many cases as accurate as those elaborated methods.
- > KNN is slow at the classification time
- > KNN does not produce an understandable model

Support Vector Machine (SVM)

It is a supervised algorithm that can be employed for both classification or regression challenges, but mostly in classification

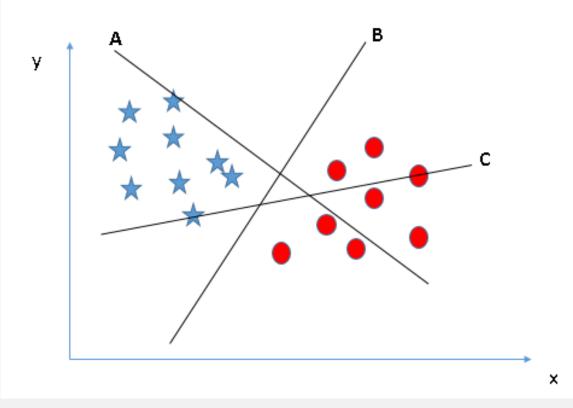
x

> Support vectors are the coordinates of the individual observation

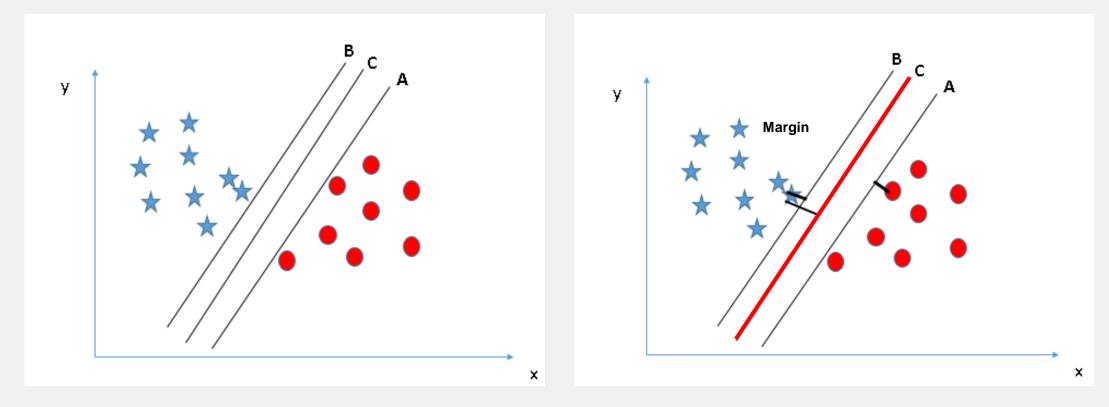


A frontier which best segregates the two classes (hyper-plane)

Scenario-1: Identify the right hyper-plane

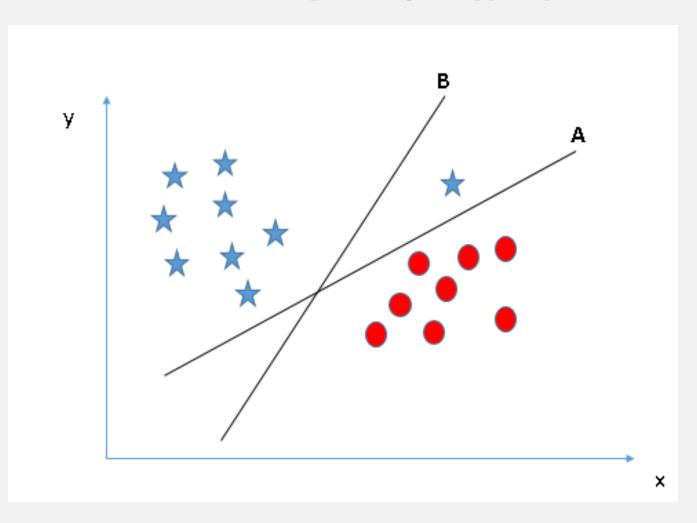


Scenario-2: Identify the right hyper-plane?

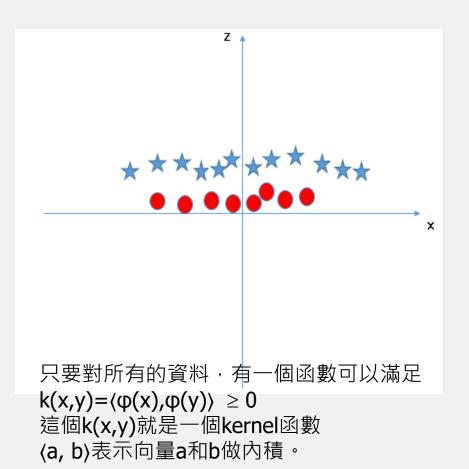


Maximizing the distances between nearest data point (either class)

Scenario-3: Identify the right hyper-plane?



SVM solves this problem by introducing additional feature Here, we will add a new feature $z=x^2+y^2$

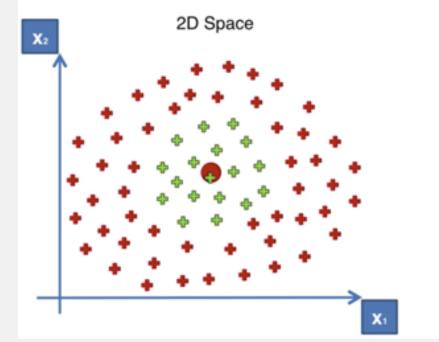


mostly useful in non-linear separation problem

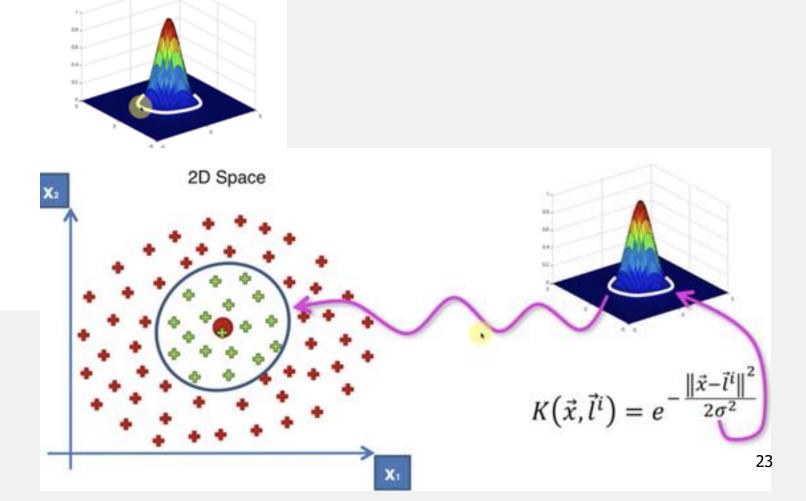
*Should we need to add this feature manually to have a hyper-plane. No, SVM has a technique called the <u>kernel</u> **trick**.

*These are functions which takes low dimensional input space and transform it to a higher dimensional space i.e. it converts not separable problem to separable problem, these functions are called **kernels**.

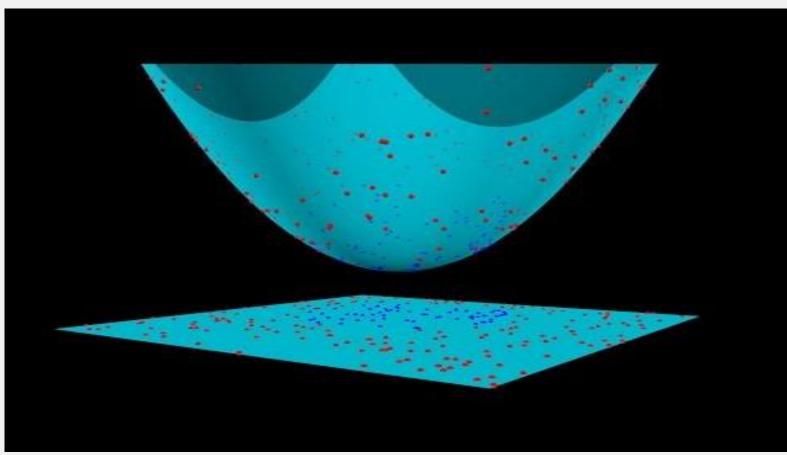
How to tune parameters of SVM?



Reference



Non-linear function



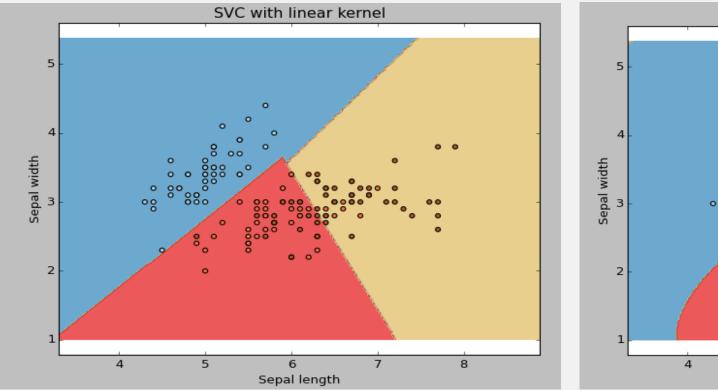
How to tune parameters

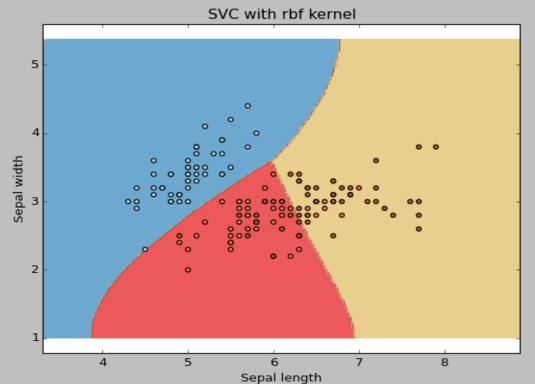
Linear kernel: $k(x, y) = \langle x, y \rangle$ Polynomial kernel: $k(x, y) = (\langle x, y \rangle + c)^d$ Gaussian Radial Basis Function kernel (RBF): $k(x, y) = e^{-\frac{||x-y||^2}{2\sigma^2}}$ $d \in Z^+, \sigma \in \mathcal{R} - \{0\}$

- C: C means low error and if the number of instances that are allowed to fall within the margin, C influences the number of support vectors used by the model
- Gamma: Higher the value of gamma, will try to exact fit the as per training data set i.e. generalization error and cause over-fitting problem
 25

How to tune parameters

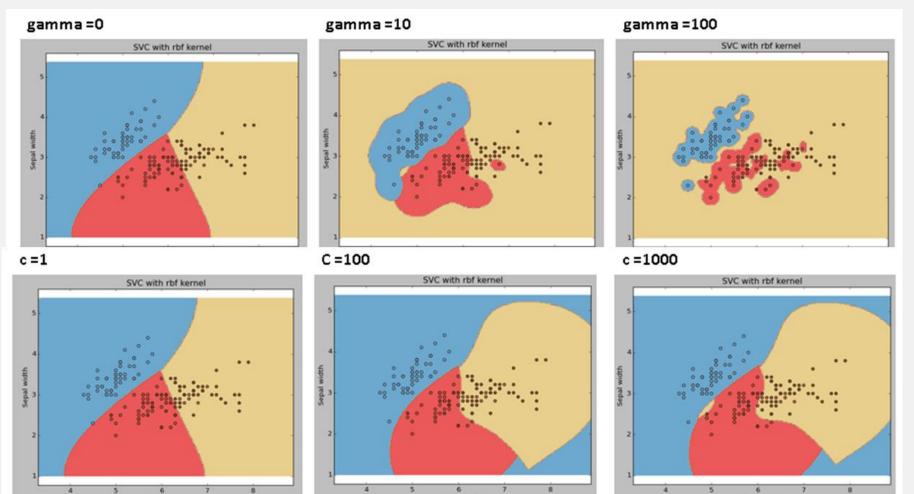
kernel=`linear'





How to tune parameters

Sepal length



Sepal length

27

Sepal length

➤ grid search

```
from sklearn import svm, grid search
def svc param selection(X, y, nfolds):
    Cs = [0.001, 0.01, 0.1, 1, 10]
    gammas = [0.001, 0.01, 0.1, 1]
    param grid = {'C': Cs, 'gamma' : gammas}
    grid search = GridSearchCV(svm.SVC(kernel='rbf'), param grid,
cv=nfolds)
    grid search.fit(X, y)
    grid search.best params
    return grid search.best params
```

Pros.

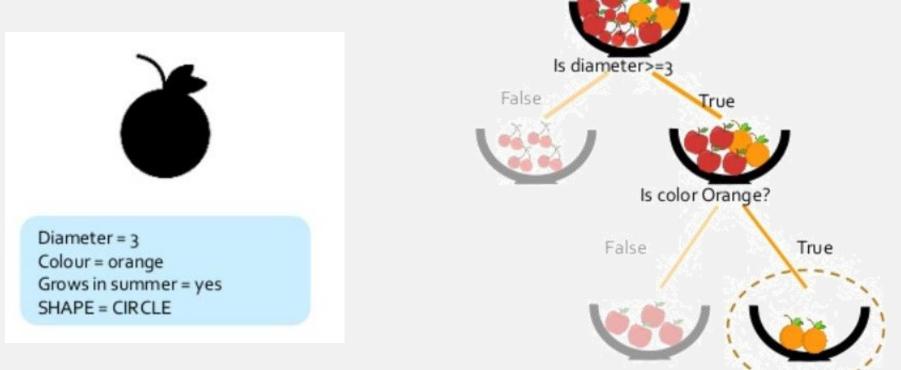
- > It works really well with clear margin of separation
- > It is effective in high dimensional spaces
- It is effective in cases where number of dimensions is greater than the number of samples

Cons.

- It doesn't perform well, when we have large data set because the required training time is higher
- It also doesn't perform very well, when the data set has more noise i.e. target classes are overlapping

Decision Trees

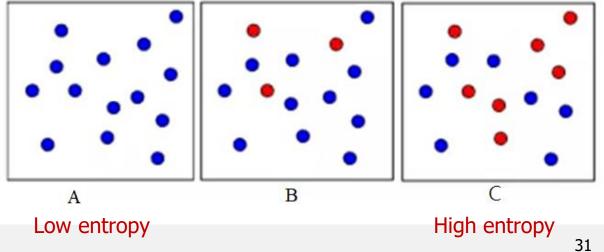
It is a conditional classifier that specializes in the classification problems with tree-like structure



A decision tree is constructed based on the existing data, usually in a "top to down" approach, dividing the whole group into several subgroups according to a certain characteristic

From each subgroup, according to a certain characteristic, the subgroup is divided into small subgroups, until the data in the subgroups are all of the same category

Problem: How to choose a best feature to cluster at each step?

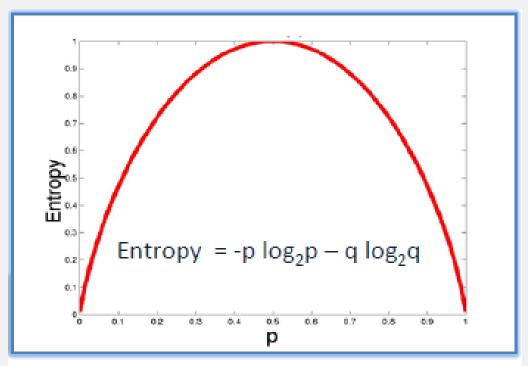


Information Entropy: measure of randomness More randomness in the data => more entropy

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

D:代表某一個特徵,且有m個類別 p:是某一個類別在這個特徵中出現的機率

若只有兩類時: 當資料全部都是同一類,則entropy=0; 若資料是各自一半時, entropy=1



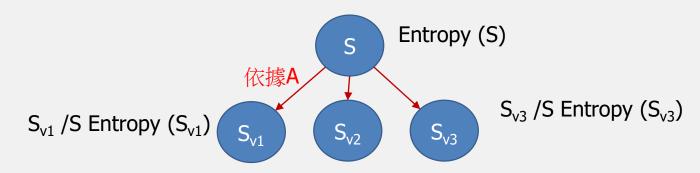
Entropy = $-0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$

How to determine the best features?

- > After obtaining entropy, the information gain is calculated
- > Information gain: to evaluate the eigenvalues for data classification
- The information gain, Gain(S, A) of an attribute A, relative to the collection of examples S

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{S_v}{S} Entropy(S_v)$$

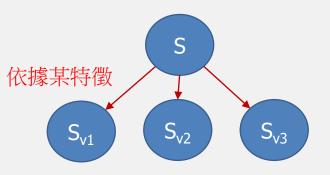
Where Values (A) is the set of all potential values for attribute A, and S_v is the subset of S for which the attribute A has value v.



An example

- > During two weeks, The target is "play ball?"
- ➢ which can be Yes or No

Outlook	Temp	Humidity	Windy	Play Golf
Rain	Hot	High	false	No
Rain	Hot	High	true	No
overcast	Hot	High	false	Yes
Sunny	Mild	High	false	Yes
Sunny	Cool	normal	false	Yes
Sunny	Cool	normal	true	No
overcast	Cool	normal	true	Yes
Rain	Mild	High	false	No
Rain	Cool	normal	false	Yes
Sunny	Mild	normal	false	Yes
Rain	Mild	normal	true	Yes
overcast	Mild	High	true	Yes
overcast	Hot	normal	false	Yes
Sunny	Mild	High	true	NO



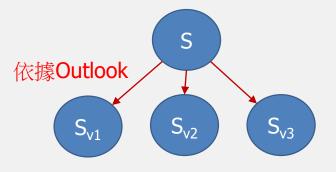
Step 1: Calculate entropy of Play Golf (target)

Play	Golf	Entropy(Play Golf) = Entropy (5,9)
Yes	No	$= -(0.36 \log_2 0.36) - (0.64 \log_2 0.64)$
9	5	= 0.94

Step 2: The dataset is then split into the different attributes

		Play Golf				Play Golf	
		Yes	No			Yes	No
Outlook	Sunny	3	2		Hot	2	2
	Overcast	4	0	Temp.	Mild	4	2
	Rainy	2	3		Cool	3	1
	Gain=0.24	7			Gain=0.		
		Play Golf				Play	
		Yes	No			Yes	No
Humidity	High	3	4	Winder	False	6	2
	High Normal	6	1		True		-
Gain=0.152				Gain=0.048			

IG 愈大表示此特徵內資料 凌亂程度愈小



$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{S_v}{S} Entropy(S_v)$$

 Outlook Gain:
 0.94 - (5/14*E(3,2)+4/14*E(4,0)+5/14*E(2,3))=0.247

 Temp Gain:
 0.94 - (4/14*E(2,2)+6/14*E(4,2)+4/14*E(3,1))=0.029

 Humility Gain:
 0.94 - (7/14*E(3,4)+7/14*E(6,1))=0.152

Windy Gain: 0.94 - (8/14*E(6,2)+6/14*E(3,3))=0.048

Step 3: pick out attribute with the greatest IG as the decision node

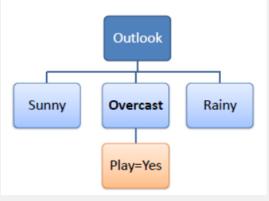
	Outlook	Temp	Humidity	Windy	Play Golf
	Sunny	Mild	High	FALSE	Yes
2	Sunny	Cool	Normal	FALSE	Yes
Sunny	Sunny	Cool	Normal	TRUE	No
N.	Sunny	Mild	Normal	FALSE	Yes
	Sunny	Mild	High	TRUE	No
st 🗧	Overcast	Hot	High	FALSE	Yes
<u>ĕ</u> 5	Overcast	Cool	Normal	TRUE	Yes
Outlook	Overcast	Mild	High	TRUE	Yes
O Ó	Overcast	Hot	Normal	FALSE	Yes
	Rainy	Hot	High	FALSE	No
È	Rainy	Hot	High	TRUE	No
Rainy	Rainy	Mild	High	FALSE	No
-	Rainy	Cool	Normal	FALSE	Yes
	Rainy	Mild	Normal	TRUE	Yes

Classification

Road Map - Decision Tree

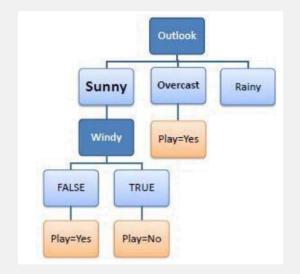
Step 4a: A branch with the entropy of Outlook = overcast

Тетр	Humidity	Windy	Play Golf
hot	high	False	Yes
cool	normal	True	Yes
mild	high	True	Yes
hot	normal	False	Yes



Step 4b: A branch with entropy of Outlook= sunny (Windy=False & Windy=True)

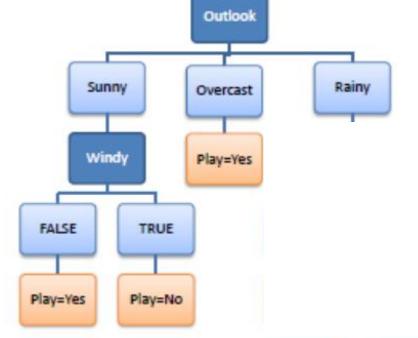
Temp	Humidity	Windy	Play Golf		
mild	high	False	Yes		
cool	normal	False	Yes		
mild	normal	False	Yes		
mild	high	True	NO		
cool	normal	True	No		



Supervised Decision Tree

Step 4c: A branch with entropy of Outlook= rain (Humidity= high & Humidity = normal)

Тетр	Humidity	Windy	Play Golf	
hot	high	false	No	
hot	high	true	No	
mild	high	false	No	
Cool	normal	false	Yes	
mild	normal	true	Yes	



Decision Tree of Weather data sets

Exercise :

試著計算Temp, Humidity, Windy 的 Information Gain,並畫出在Rainy下的樹狀結構

Supervised Decision Tree

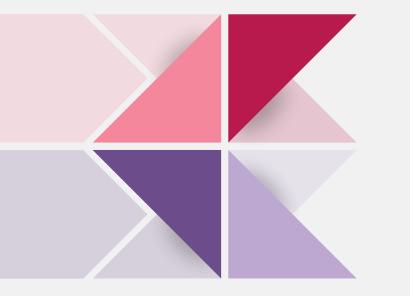
Pros.

- > Implicitly perform feature selection
- Easy to interpret and explain
- > Can generate rules helping experts to formalize their knowledge
- Data classification without much calculations
- > Handling both continuous and discrete data
- > Require relatively little effort from users for data preparation
 - they do not need variable scaling
 - they can deal with a reasonable amount of missing values
 - they are not affected by outliers

Supervised Decision Tree

Cons.

- The high classification error rate while training set is small in comparison with the number of classes
- > Exponential calculation growth while problem is getting bigger



02

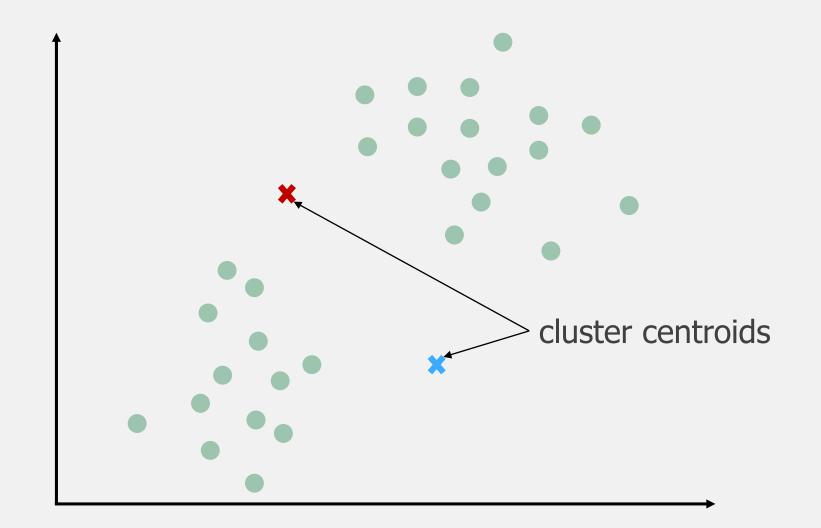
Unsupervised Learning

K-means

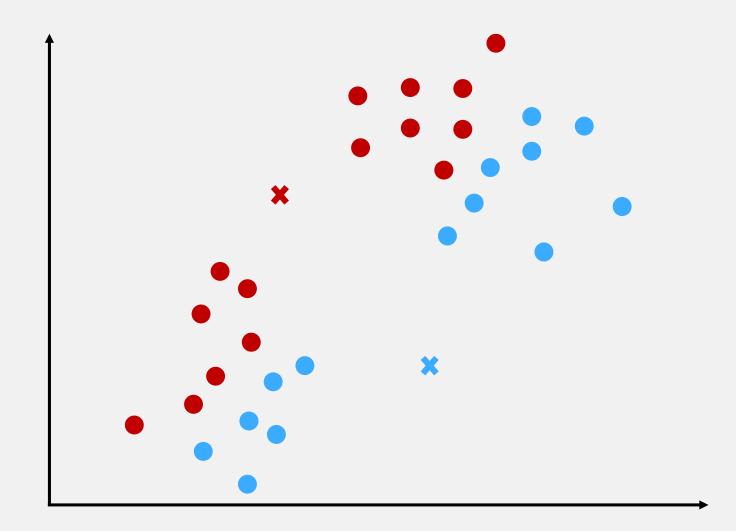
The concept of the K-means Clustering method is simple, which is "birds of a feather flock together"

- 1. Choose K centroids randomly or with other algorithms
- 2. Assign each data point to the nearest centroid, forming K clusters
- 3. Calculate the centroid of each cluster
- 4. Repeat steps 2 and 3 until the centroids no longer move or the maximum iteration is reached

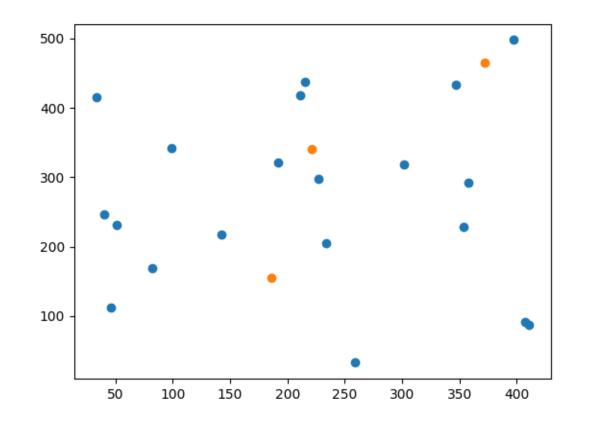
K-means

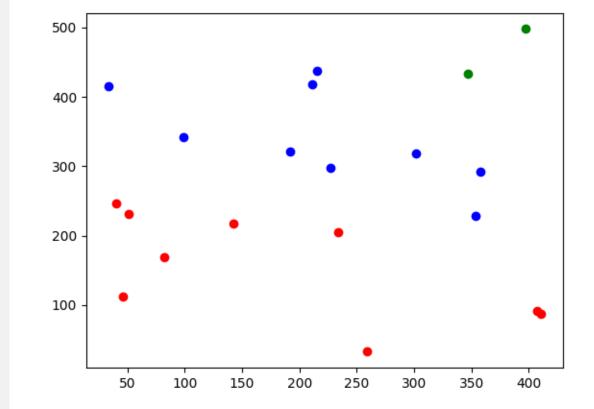


K-means



K-means





K-means

Pros.

- > Fast computation, ease of implementation, and interpretation
- > Handle large datasets

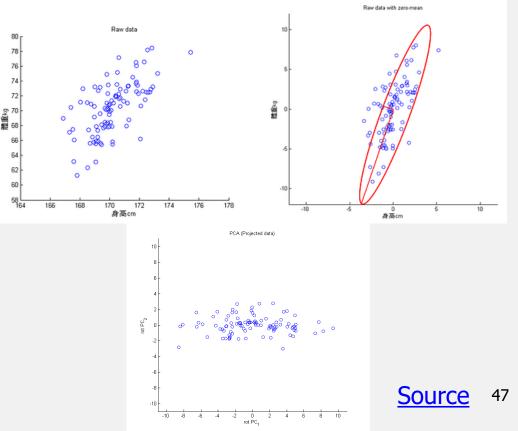
Cons.

- Require manually setting the number of clusters K, and the result usually depends on the initialization of centroids
- Sensitive to noise and outliers

Unsupervised Principle Component Analysis

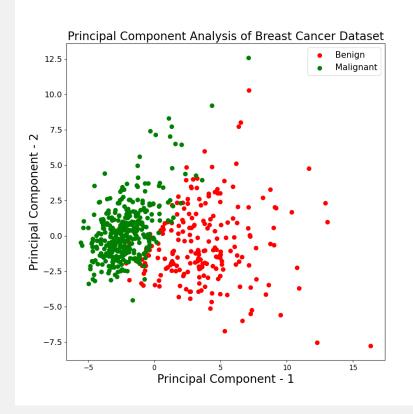
PCA is a linear dimensionality reduction technique used to transform high-dimensional data into a lower-dimensional representation while retaining most of the original data's variability

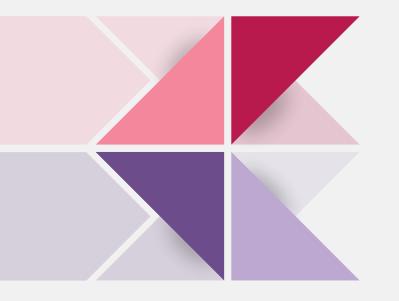
- 1. Data standardization
- 2. Covariance matrix calculation
- 3. Eigenvalues and eigenvectors computation
- 4. K principal components selection
- 5. Data translation
- 6. Visualization and analysis



Principle Component Analysis

[5 1 0 1 2 3 4	rows x 31 columns] mean radius mean t 17.99 20.57 19.69 11.42 20.29	cexture mea 10.38 17.77 21.25 20.38 14.34	n perimete 122.8 132.9 130.0 77.5 135.1	30 90 90 90	worst	symmetry 0.4601 0.2750 0.3613 0.6638 0.2364	worst frac	tal dimension: 0.11890 0.08902 0.08758 0.17300 0.07678	Benign Benign Benign Benign	
 564 565 566 567 568	21.56 20.13 16.60 20.60 7.76	22.39 28.25 28.08 29.33 24.54	142.0 131.2 108.3 140.1 47.9	90 80 0		0.2060 0.2572 0.2218 0.4087 0.2871		0.07115 0.06637 0.07820 0.12400 0.07039	/ Benign Benign Benign	
564 565 566 567	<pre>P rows x 31 columns] feature0 feature1 2.110995 0.721473 1.704854 2.085134 0.702284 2.045574 1.838341 2.336457 -1.808401 1.221792</pre>	2.060786 1.615931 0.672676	2.343856 1.723842 0.577953 - 1.735218	feature4 1.041842 0.102458 0.840484 1.525767 3.112085	2 3 4 7	feature25 -0.273318 -0.394820 0.350735 3.904848 -1.207552	8 0.66451 0.23657 5 0.32676 8 3.19760	2 1.629151 3 0.733827 57 0.414069 5 2.289985	feature28 -1.360158 -0.531855 -1.104549 1.919083 -0.048138	feature -0.7090 -0.9739 -0.3184 2.2196 -0.7512
	[5 ro 0 1 2 3 4	ows x 30 princij		_	2837 7802 3896 2953		cipal d	component 1.9485 -3.7681 -1.0751 10.2755 -1.9480	583 .72 .74 589	
	 564 565 566 567 568			6.439 3.793 1.256 10.374 -5.475	3382 5179 4794			-3.5768 -3.5840 -1.9022 1.6720 -0.6706)48 297)10	



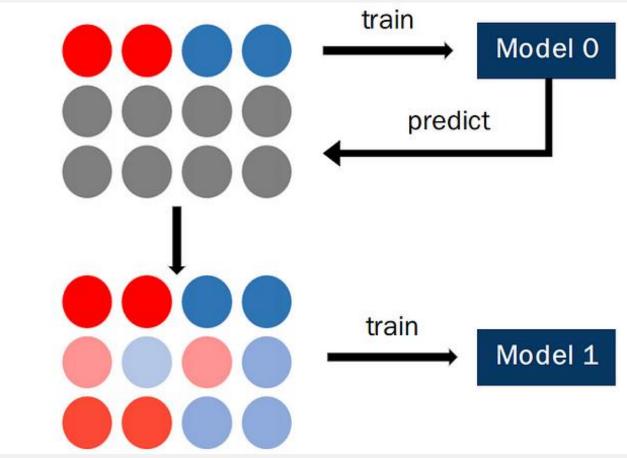


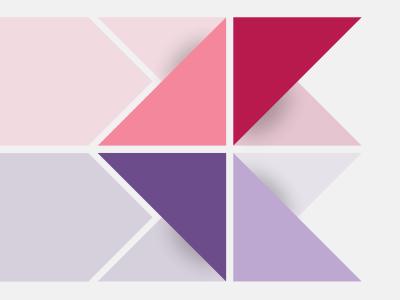
03 Semi-supervised Learning

Semi-supervised

Semi-supervised learning refers to the use of a small amount of labeled data and a large amount of unlabeled data to train a machine learning

model





04 Self-supervised Learning (SSL)

Introduction

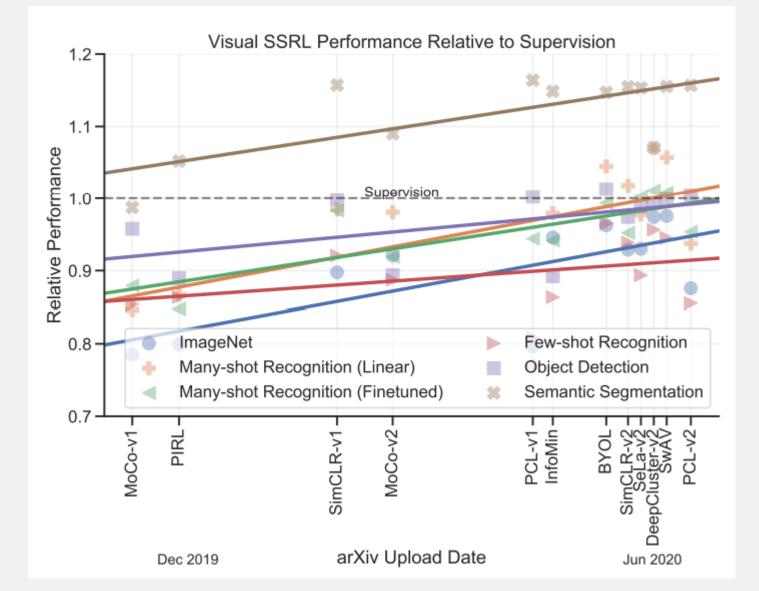
Self-supervised learning (SSL)

- It is an evolving machine learning technique to solve the challenges posed by the over-dependence of labeled data
- > A special type of representation learning via unlabeled data
- > Model trains itself to learn one part of the input from another part of the input

Why do we need SSL?

- High cost The cost of good quality labeled data is very high in terms of time and money
- Lengthy lifecycle The preparation lifecycle is a long process including data clean, annotation, review, and reconstruction

Introduction

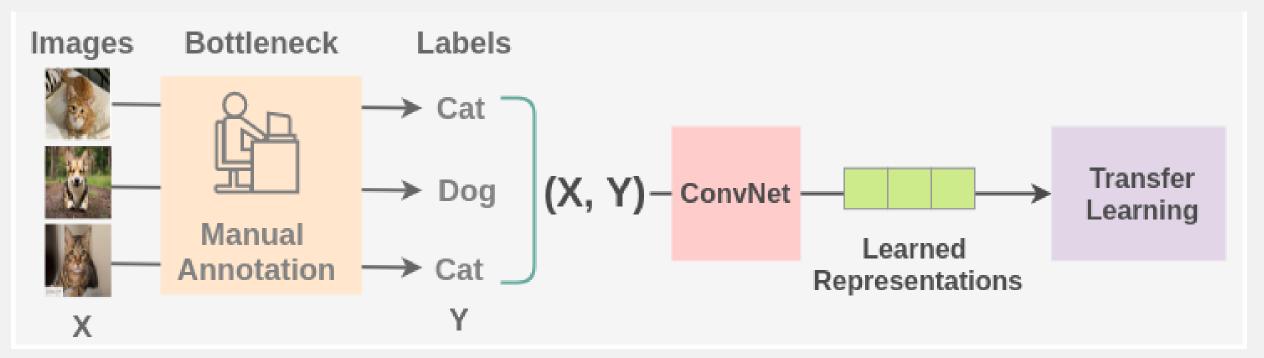


<u>Reference</u>

Introduction

The workflow of SSL

- > Training with unlabeled data to obtain a general representation
- Fine-tuning with few labeled data



Introduction

Approaches

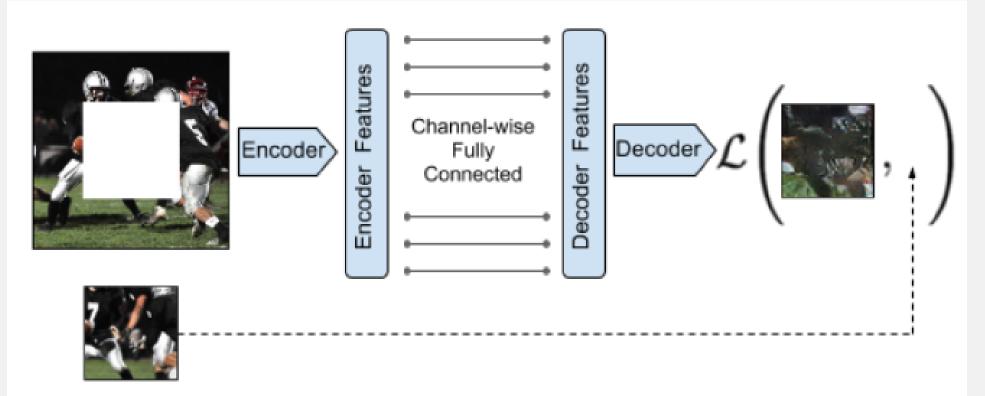
- > Generative
- Predictive
- Contrastive
- Bootstrapping
- Regularization

Generative

Generative

Generative

- > Training model to reconstruct the pixel space
 - Image inpainting

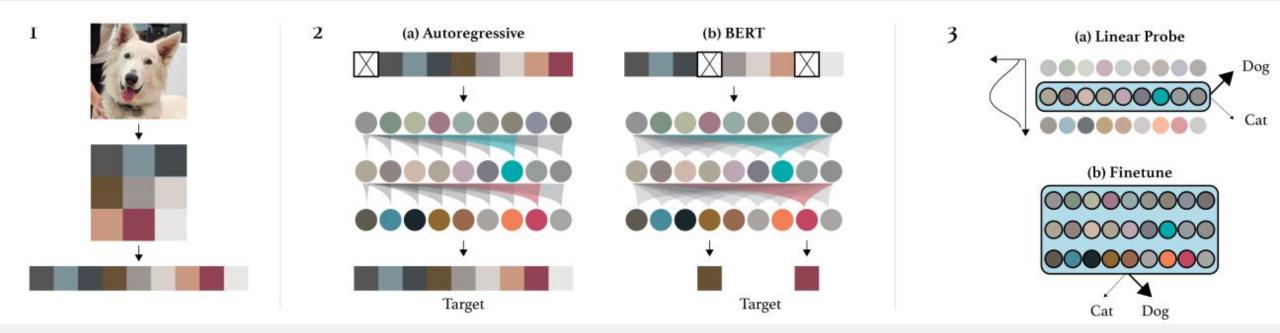


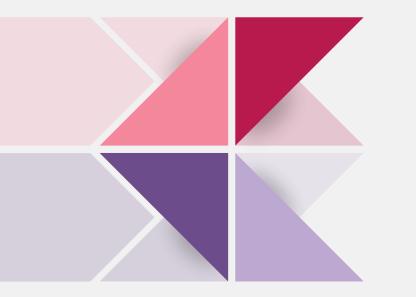
Referensee

Generative

Generative

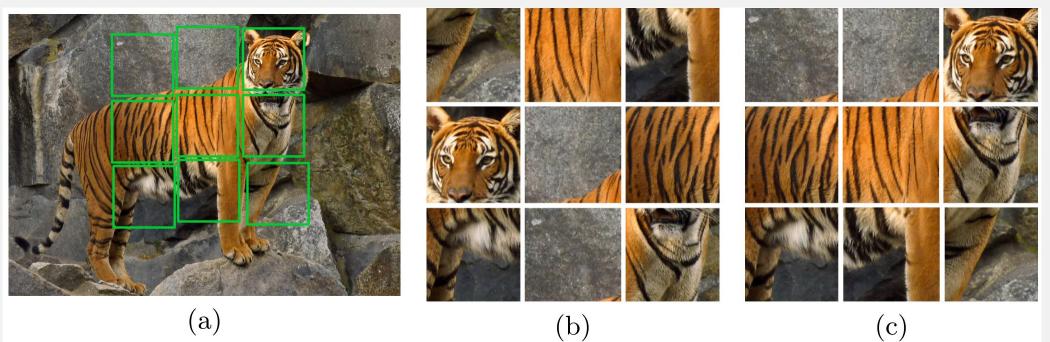
- > Training model to reconstruct the pixel space
 - Image inpainting





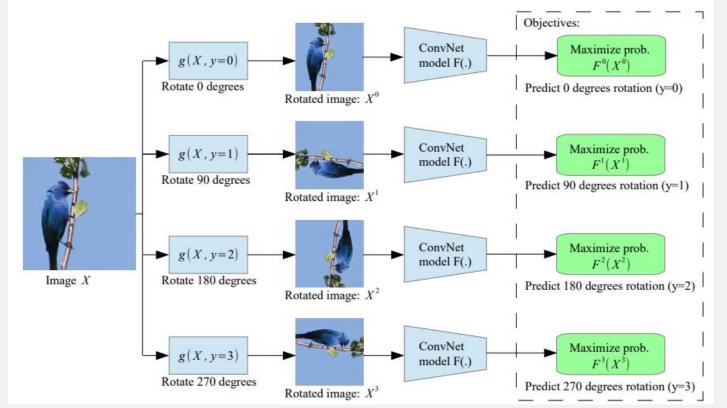
Predictive

- > "Change" and "recovery" image without pixel generation
 - High-level representation generation based on pixel is a hard task
 - Context prediction



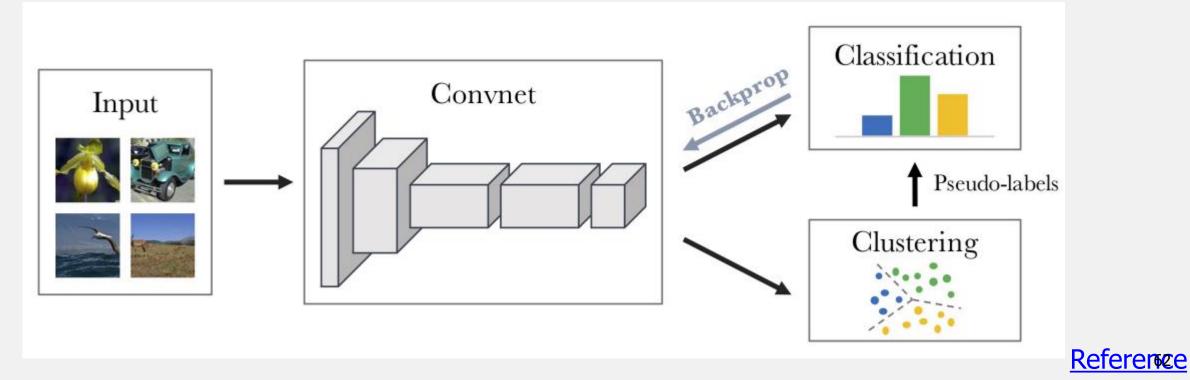
Predictive

- > "Change" and "recovery" image without pixel generation
 - High-level representation generation based on pixel is a hard task
 - Context prediction



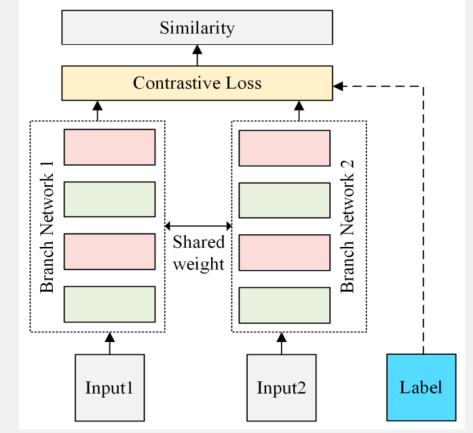
Predictive

- > "Change" and "recovery" image without pixel generation
 - High-level representation generation based on pixel is a hard task
 - Context prediction



Contrastive

- A widely used approach in SSL
- > The higher similarity between images of same class is the better
 - Siamese network

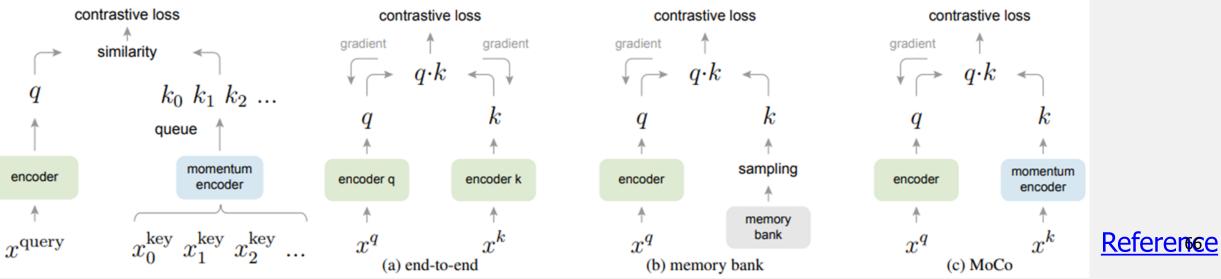


Contrastive

Contrastive

Contrastive - MoCov1

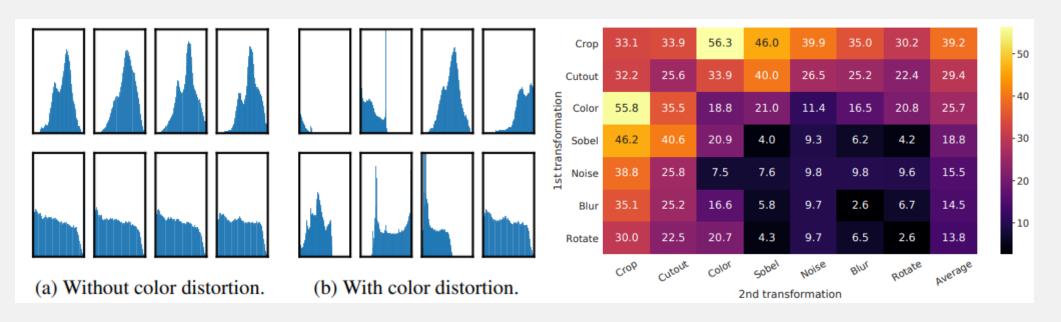
- Dictionary as a queue
 - Enqueue a batch representation and dequeue the oldest representation
- Momentum encoder
 - Keep queue dictionary data consistent
- Shuffling BN
 - shuffle the data order before training and recovery the order after extracting representation

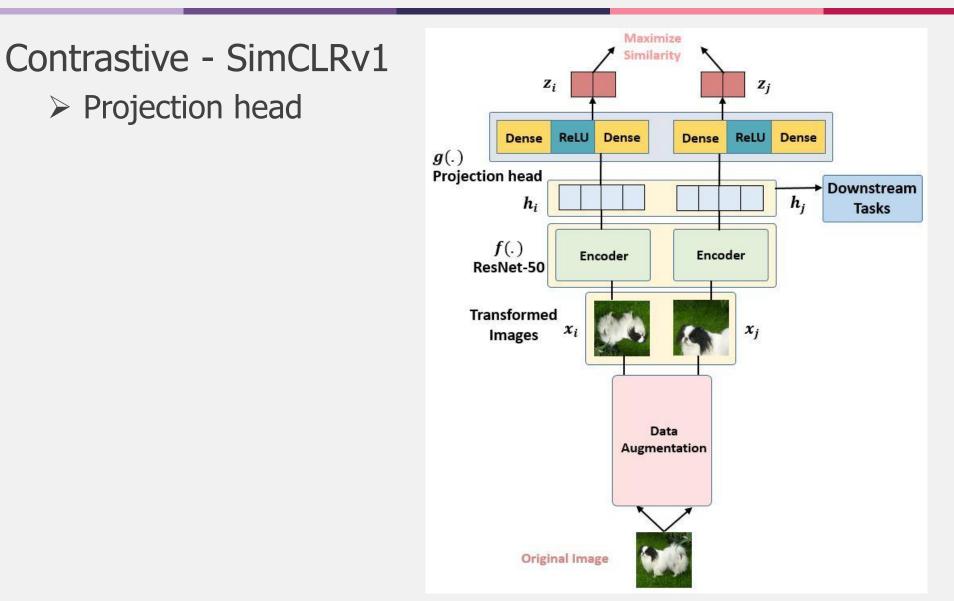


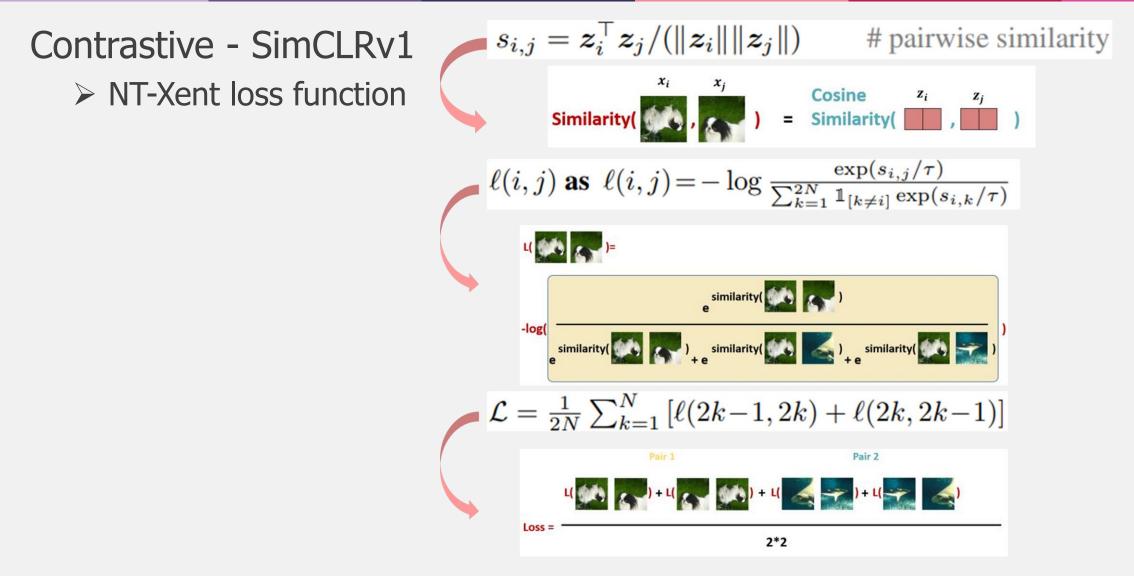
Contrastive

Contrastive - SimCLRv1

- Data augmentation combination
- Projection head
- NT-Xent loss function







Bootstrapping

D

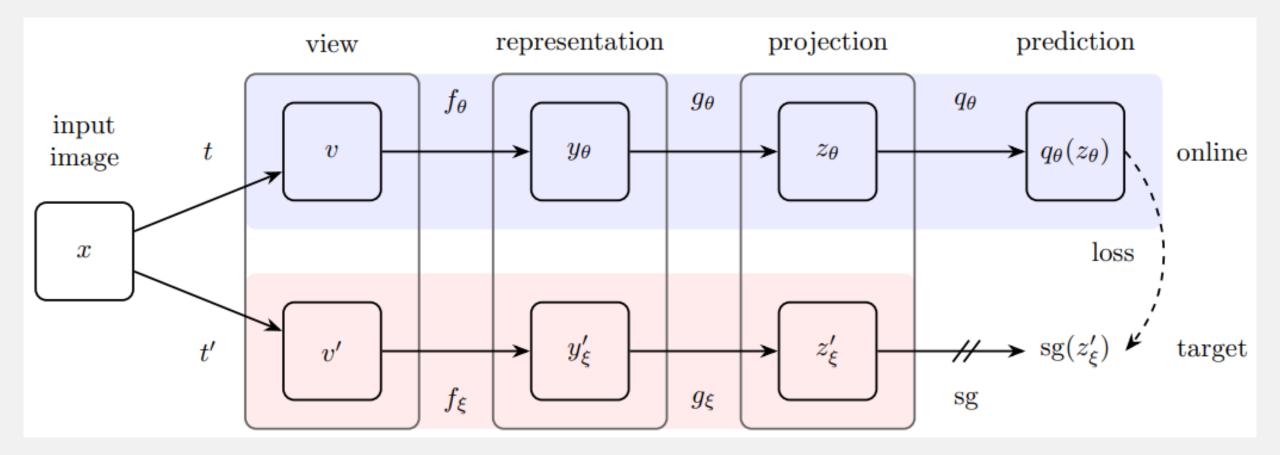
Bootstrapping

Bootstrapping

- > In contrastive methods, the negative samples selection is a hard problem
 - The contribution of negative samples is to avoid model collapse
- > How to training without negative samples?
 - BYOL
 - SimSiam

Bootstrapping

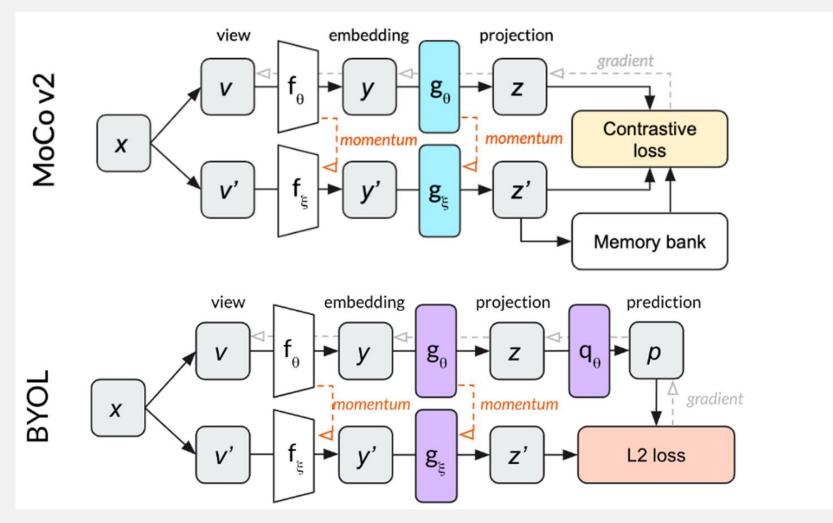
BYOL (Bootstrap your own latent)

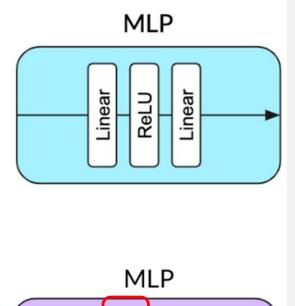


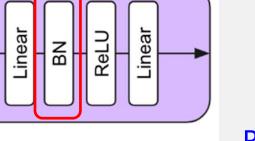
<u>Reference</u>

Self-supervised Learning Bootstrapping

BYOL (Bootstrap your own latent)

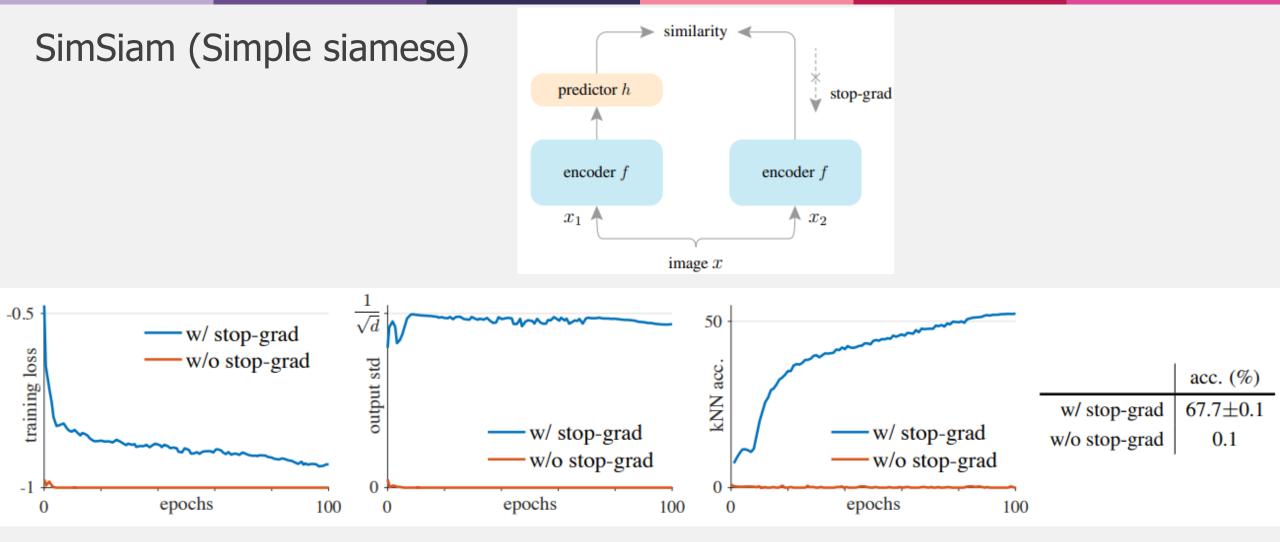




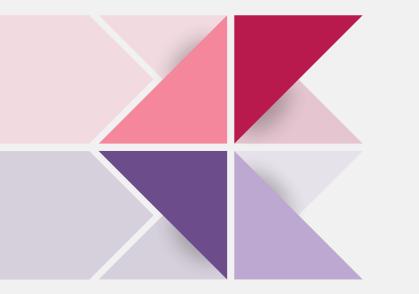


Reference

Bootstrapping



<u>Referenœ</u>



Regularization

Ε

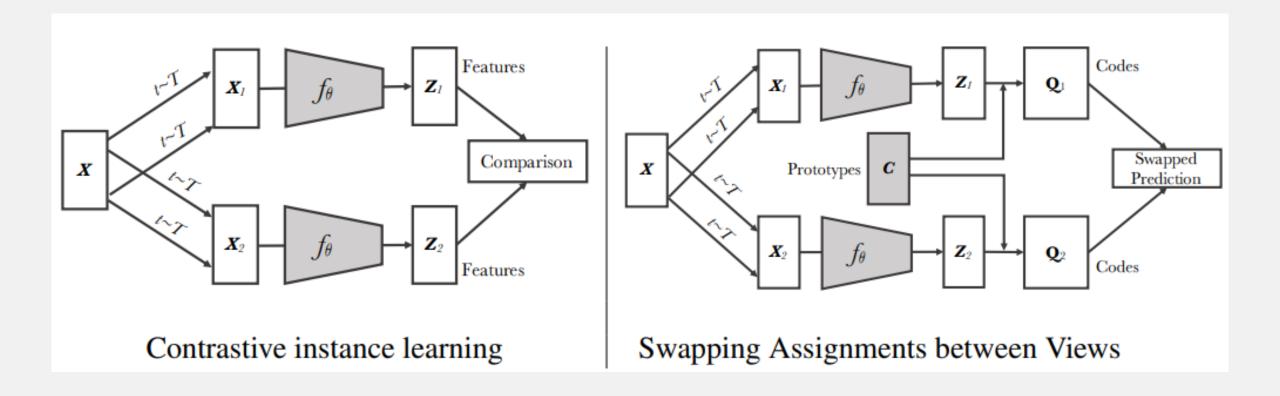
Regularization

Simple extra regularization

- > Training also without negative samples
- > Representation mining with regularization while training
 - SwAV
 - Barlow twins

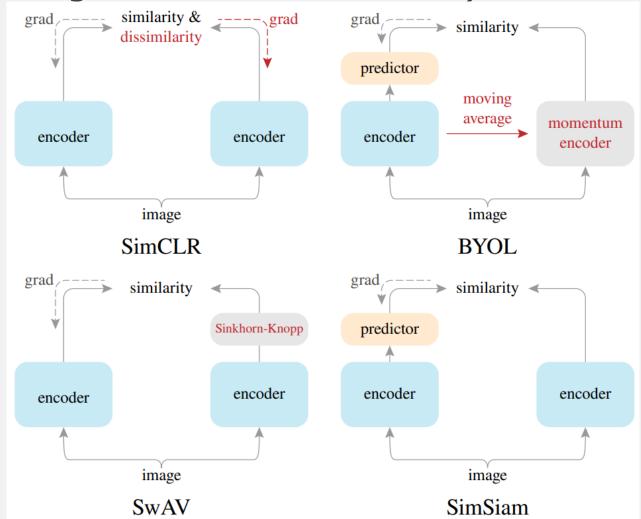
Regularization

SwAV (Swapping assignments between views)



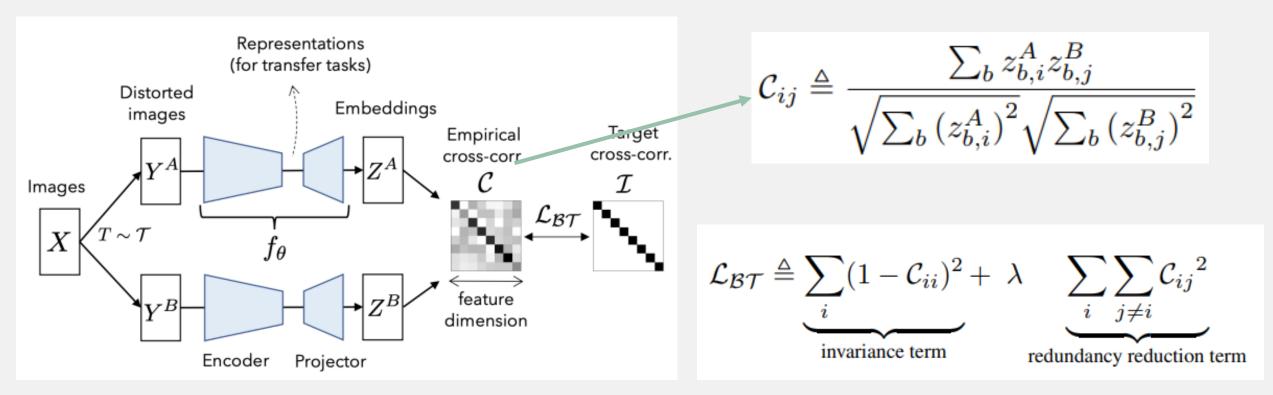
Regularization

SwAV (Swapping assignments between views)



Regularization

Barlow Twins





05

Examples

Examples

Supervised Learning

Unsupervised Learning

<u>Link</u>

Semi-supervised Learning

Link